Nyvo Docs
  • Introduction
  • Overview
    • Mission
    • Vision
  • The Product
    • Key Features
      • AI-Powered Prompt Interface
      • Full-Stack dApp Generation
      • One-Click Deployment
      • High-Performance Blockchain Support
      • Customizable UI & Theming
      • Integration and Composability
      • Developer-Friendly Export and Extension
      • Built-in Wallet & Identity Solutions
    • Use Cases and Examples
      • DeFi and Token Launchpads
      • NFT Marketplaces and Games
      • DAOs and Governance Platforms
      • Social and Utility dApps
      • Enterprise and Real-World Asset Apps
  • How Nyvo works
    • 1. Natural Language Understanding
    • 2. Solution Planning
    • 3. Smart Contract Code Generation
    • 4. Automated Testing & Validation
    • 5. Frontend Generation
    • 6. User Review and Iteration
    • 7. Deployment to Blockchain
    • Conclusion
  • Platform Architecture
    • Nyvo Studio
    • AI Orchestration Engine
    • Code Generation Models
      • Smart Contract Generator
      • Frontend/UI Generator
      • Documentation & Instruction Generator
    • Template & Module Library
    • Compilation & Testing Sandbox
    • Hosting Infrastructure
    • Data Storage & Security
  • Developer Guide & API
    • Architectural Overview
      • Program Deployment
      • Wallet Interactions & Security
      • UI Binding to On-Chain Data
      • Integration with Solana Runtime
    • Building dApps with Nyvo: Step-by-Step Guide
      • 1. Define the dApp Prompt
      • 2. Configuration & Module Selection
      • 3. Program Generation and Deployment
      • 4. Front-End Generation and Binding
      • 5. Testing the dApp
      • 6. Deployment to Production
  • Supported dApp Modules
    • Staking Module
    • Marketplace Module
    • Launchpad Module
    • Governance Module
    • Other Utility Modules
  • API and Abstraction Layers
    • Smart Contract Abstraction
    • Transaction Management API
    • Front-End and UI Components
    • Security Considerations in the API
  • Infrastructure & Performance
    • Deterministic Address Derivation (PDAs)
    • Transaction Simulation and Compute Units
    • Solana Fee Model and Cost Prediction
  • Rent-Exemption and Storage Costs
  • Combining Modules and Cross-Program Interactions
  • Best Practices: Security, Testing, and Maintenance
  • Pricing & Revenue Projection
    • Target Market & Addressable Users
    • Pricing Model & Tiers
      • Freemium (Free Tier)
      • Premium (Subscription Tier)
      • Lifetime (One-Time Purchase)
    • User Adoption Forecast
    • Revenue Projections
    • Marketing & Acquisition Channels
    • Expansion Plans & Future Monetization
  • Prompt Engineering
    • Key Strategies for Effective Solana-Focused Prompts
      • Set the AI’s Role and Context Upfront
      • Be Clear and Specific in Your Request
      • Provide Context from Your Project
      • Structure Prompts for Both Code and Explanations
      • Take an Iterative Approach
    • Building a Prompt Library
    • Debugging and Refining AI Outputs
    • Examples for Common dApp Scenarios
      • Example 1: Staking Dashboard dApp
      • Example 2: NFT Marketplace / Platform
      • Example 3: Crowdfunding (Fundraising) dApp
    • Final Tips
  • Legal & Socials
    • The Nyvo Whitepaper
    • Legal Disclaimer
    • Socials
Powered by GitBook
On this page
  1. Developer Guide & API
  2. Building dApps with Nyvo: Step-by-Step Guide

5. Testing the dApp

Previous4. Front-End Generation and BindingNext6. Deployment to Production

Last updated 1 month ago

CtrlK

Before releasing, it’s critical to test your Nyvo-built dApp. If you deployed to Solana’s devnet, you can use that environment for testing without real funds. Use a wallet with devnet SOL (Nyvo might automatically airdrop some for you, or you can use Solana CLI to request an airdrop) to simulate user interactions.

Test all module features: e.g., for staking, try staking and unstaking flows; for a launchpad, run through a token sale round on devnet. Observe the on-chain state changes using explorers or the Nyvo developer console (Nyvo may provide a dashboard showing account data). Nyvo’s front-end likely has logging or developer mode to see the transactions being sent.

You can also utilize Solana’s transaction simulation feature to predict outcomes without committing state. The Solana RPC method simulateTransaction allows you to run a transaction locally on a node and get the result and logs, which is useful for debugging Nyvo’s tools might expose a one-click “Simulate” for any user action, enabling you to see if a transaction would succeed (and how much compute it would consume) before actually sending it. Make sure to test edge cases (e.g., error conditions like trying to buy an item with insufficient balance) to ensure the dApp handles them gracefully (the UI should display transaction errors returned by the program).